安庆师范大学 2021 年专升本招生考试 化学工程与工艺专业

科目1《化工概论》考试纲要

一、考试范围与内容

本纲要规定的考试范围和内容,以教育部所颁布的《高等职业学校专业教学标准(试行)》为依据,主要内容包括:现代化工各领域有关化学工程与技术的基础知识、典型工艺与生产过程以及近年来发展的新动向、新技术、新趋势等,总分为 150 分。考试侧重考查考生对化学工程与技术的基础知识与技能的掌握程度,同时注意考查考生运用所学专业知识分析、解决实际问题的能力。

主要参考教材如下:

1. 张娜, 王强, 时维振主编《现代化工导论》, 中国石化出版社, 2013年。

二、考试目标与水平层次

本纲要确定的考试目标由知识与技能要点、考试条目和考试水平三部分组成。"知识与技能要点"考查考生应知应会的基础知识和基本技能;"考试条目"是"知识与技能要点"内容的细化;考试水平是具体确定所考查的应知应会的知识和技能的考查层次。

本纲要的考试水平分为四个层次: A(识记)、B(理解)、C(掌握)、D(综合运用)。每一较高层次同时包含其较低层次的考试水平。其具体含义为:

A(识记): 主要考查考生对专业基础知识的识别和记忆水平,要求考生能正确地辨别、再认或再现相应的基础知识,如要求学生能从题目所提供的材料中识别出学过的知识(再认)或者能按题目要求复述学过的知识(再现)。即在记忆水平上考核考生的学习成果。例如: "石油炼制"的概念。

B(理解):主要考查考生对专业基础知识的理解程度。除"识记"的要求外,正确理解所学知识的确切含义以及与其相关知识的内在联系。例如:化学工业发展的重要趋势有哪些?

C(掌握):主要考查考生对所学专业基础知识、基本技能的初步运用能力。 要求考生在理解的基础上,用所学过的知识及方法解决新情况下出现的简单问 题。例如:煤气化的原理及工艺。

D(综合运用):主要考查考生对所学专业基础知识的综合运用能力。要求 考生在对专业基础知识掌握的基础上,具有系统的、灵活的、较强的综合应用能力。例如:石油炼制过程工艺等。

三、考试内容

一、绪论

知识与技能要	老 汗 夕 口	-	考试水平		
点	考试条目	A	В	С	D
化工作品流	1. 化工的定义	V			
化工的内涵	2. 化工的特点		$\sqrt{}$		
化工的分类	1. 化工的分类	V			
	1. 化工与农业		V		
	2. 化工与医药	V			
化工在国民经济	3. 化工与能源	√			
中的地位	4. 化工与国防	$\sqrt{}$			
	5. 化工与人类生活	$\sqrt{}$			
化工的发展趋势	1. 化工的发展趋势			V	
	1. 化工生产的基本概念		$\sqrt{}$		
化工基础知识	2. 化工单元过程与化工单元操作		$\sqrt{}$		
	3. 工艺程序结构		$\sqrt{}$		

二、天然气化工

知识与技能要	考试条目		考试	水平	Ē
点	与 风	A	В	C	D
天然气资源	1. 天然气资源	V			
天然气的组成与	1. 天然气的组成		V		
分类	2. 天然气的分类		$\sqrt{}$		
天然气的化工利	1. 天然气的化工利用		2/		
用	. 大然气的化工利用		7		
天然气的处理与	1. 天然气处理与加工的涵义	V			

加工	2. 天然气加工的主要产品	$\sqrt{}$		
	1. 天然气转化制合成气			\checkmark
	2. 天然气转化合成甲醇			\checkmark
	3. 天然气制乙炔		$\sqrt{}$	
天然气化工产品	4. 天然气制炭黑	$\sqrt{}$		
的制备	5. 天然气的氯化加工			\checkmark
	6. 天然气硝化制硝基甲烷		$\sqrt{}$	
	7. 天然气合成氢氰酸		$\sqrt{}$	
	8. 天然气制二硫化碳		$\sqrt{}$	

三、煤化工

知识与技能要	老 汗 夕 口	-	考试	水平	水平	
点	考试条目	A	В	С	D	
煤化工的原料及	1. 煤化工的原料——煤	V				
其范围	2. 煤化工的范围	1				
煤化工的发展	1. 煤化工的发展	1				
	1. 煤的成焦过程机理		V			
法住	2. 配煤的目的和意义		1			
炼焦	3. 炼焦化学工业产品				$\sqrt{}$	
	4. 炼焦产品的回收与加工				$\sqrt{}$	
	1. 煤气化原理			V		
煤的气化	2. 煤气化工艺			√		
	3. 煤气化技术的应用			√		
	1. 煤的直接液化反应机理		V			
煤的直接液化	2. 煤的直接液化工艺		1			
	3. 典型的煤直接液化工艺			√		
	1. 煤的间接液化技术	1				
推的 间按流 ル	2. FT 合成反应			√		
煤的间接液化	3. 煤的间接液化工艺		1			
	4. 典型的间接液化工艺		√			

四、碳一化工

知识与技能要	老哥女日	-	考试	水平	Ē
点	考试条目	A	В	С	D
碳一化工的定义	1. 碳一化工的定义		V		
及特点	2. 碳一化工的特点		$\sqrt{}$		
型 . ルエ 火 量 的	1. 能源结构的调整	V			
碳一化工发展的 推动力	2. 环保的要求	1			
1年4月7月	3. 科技的进步	1			
	1. 合成气的生产技术	1			
碳一化工发展的	2. 合成气路线合成液体燃料	1			
热点	3. 合成气路线合成基础有机化学品		$\sqrt{}$		
	4. 天然气(甲烷)直接合成基础有机化学品		$\sqrt{}$		
	1. 二甲醚			V	
典型碳一化工产	2. 碳酸二甲酯				√
品的生产	3. 甲醛				$\sqrt{}$
	4. 醋酸			$\sqrt{}$	

五、石油化工

知识与技能要	*******************\		考试水		
点	考试条目	A	В	С	D
石油化工概论	1. 石油化工概论	V			
	1. 原油的一般性质	V			
	2. 原油的元素组成		$\sqrt{}$		
石油	3. 原油的馏分组成		$\sqrt{}$		
17 11 11 11 11 11 11 11	4. 原油的烃类组成			$\sqrt{}$	
	5. 石油中的非烃化合物			$\sqrt{}$	
	6. 原油的分类		$\sqrt{}$		
	1. 原油的预处理			V	
石油炼制	2. 原油的蒸馏				$\sqrt{}$
	3. 催化裂化				$\sqrt{}$

	4. 催化重整				V
	5. 加氢精制和加氢裂化				$\sqrt{}$
	1. 热裂解的原料	V			
	2. 热裂解的反应原理				$\sqrt{}$
石油烃类热裂解	3. 热裂解工艺		$\sqrt{}$		
	4. 裂解产物的急冷操作			V	
	5. 裂解气分离			$\sqrt{}$	
	1. 芳烃的来源		$\sqrt{}$		
芳烃的生产	2. 芳烃的转化		$\sqrt{}$		
	3. 芳烃联合加工流程		$\sqrt{}$		
	1. 乙烯系列产品及用途	1			
プ油ル エ立口	2. 丙烯系列产品及用途	√			
石油化工产品	3. 碳四烃系列产品及用途	√			
	4. 芳烃系列产品及用途	√			
	1. 环氧乙烷、乙二醇				1
	2. 氯乙烯				V
	3. 丙烯腈			$\sqrt{}$	
典型石油化工产	4. 丙酮、苯酚			$\sqrt{}$	
品的生产工艺	5. 顺酐		$\sqrt{}$		
	6. 环己烷		$\sqrt{}$		
	7. 对苯二甲酸及二甲酯		$\sqrt{}$		
	8. 双酚 A		$\sqrt{}$		

六、高分子科学与高分子合成材料

知识与技能要	考试条目		考试水平			
点		A	В	C	D	
高分子科学的发	1. 高分子的定义	V				
展	2. 高分子科学的发展			$\sqrt{}$		
高分子的组成、	1. 高分子的基本组成		V			
性质及分类	2. 高分子的基本性质		$\sqrt{}$			

	3. 高分子的分类		√		
- / - / N H	1. 高分子合成方法		V		
高分子合成工艺	2. 高分子合成工艺			1	
	1. 塑料			1	
通用高分子材料	2. 橡胶			√	
	3. 纤维		√		
	1. 离子交换高分子材料与吸附性高分子材料		V		
	2. 高吸水性树脂	$\sqrt{}$			
	3. 螯合树脂及配位高分子	$\sqrt{}$			
北北京八字县 柳	4. 高分子功能膜材料	$\sqrt{}$			
功能高分子材料	5. 导电性高分子材料	$\sqrt{}$			
	6. 感光性高分子	$\sqrt{}$			
	7. 医用高分子	$\sqrt{}$			
	8. 智能高分子材料	$\sqrt{}$			

七、精细化工

L. NH L. LL ME T			-t-/ \ \	1. 55	
知识与技能要	考试条目		考试	水半	•
点	7 14/1/11	A	В	C	D
精细化工的形成	1. 精细化工和精细化学品的定义		$\sqrt{}$		
与发展	2. 精细化工的形成与发展	1			
	1. 小批量、多品种、复配型多	1			
精细化工的特点	2. 间歇生产装置	√			
	3. 高技术密集度	1			
	4. 经济效益高	√			
精细化工产品的	1 辖如从工立口的八米		V		
分类	1. 精细化工产品的分类		V		
	1. 涂料		V		
典型的精细化工	2. 胶黏剂		V		
产品	3. 香料及香精	V			
	4. 化妆品	√			

5. 石油化学品		√	

八、生物化工

知识与技能要	考试条目	-	考试	水平	£.
点	与	A	В	С	D
生物化工的特点	1. 生物化工的特点		V		
	1. 医药领域	1			
生物技术的应用	2. 农业领域	1			
领域	3. 精细化工领域	1			
	4. 石油化工领域		$\sqrt{}$		
生物技术的发展	1. 生物技术的主要发展趋势		V		
趋势	2. 生物化工的主要发展趋势		$\sqrt{}$		
	1. 酶及酶催化		V		
生物催化剂——	2. 酶制剂的发展	1			
再	3. 典型的酶制剂		V		
	4. 酶的应用		$\sqrt{}$		
生物加工工程	1. 生物反应器		V		
土初加工工任	2. 生物产品的分离提纯			$\sqrt{}$	
	1. 苹果酸		$\sqrt{}$		
典型生物化工产	2. 反丁烯二酸		$\sqrt{}$		
品的生产技术	3. 谷胱甘肽		$\sqrt{}$		
1001年)1又小	4. 发酵法甘油		$\sqrt{}$		
	5. L-赖氨酸		$\sqrt{}$		

一 九、绿色化学与绿色化工

知识与技能要	考试条目	考试水平				
点	与 风余日		В	С	D	
绿色化学的产生	1. 绿色化学的产生		V			
与发展	2. 绿色化学的发展	V				
绿色化学的研究	1. 绿色化学的定义		V			
内容及特点	2. 绿色化学的研究内容		$\sqrt{}$			

	3. 绿色化学的特点	\checkmark		
	1. 绿色化学的"十二原则"	\checkmark		
绿色化工	2. 绿色化工技术的特点	$\sqrt{}$		
	3. 绿色化工工艺		$\sqrt{}$	
	1. 绿色催化剂——分子筛催化剂	V		
典型的绿色化工	2. 绿色无机化工产品——绿色环保焊膏	$\sqrt{}$		
产品	3. 绿色精细化学品——绿色燃料添加剂		$\sqrt{}$	
	4. 绿色生物化工产品——绿色生物制药	$\sqrt{}$		

十、化学工业面临的挑战

知识与技能要	老 /₽⁄2 □		考试水平			
点	考试条目	A	В	C	D	
	1. 化工污染的发展	$\sqrt{}$				
化工污染	2. 化工污染的来源		$\sqrt{}$			
	3. 化工污染的特点		$\sqrt{}$			
	1. 可持续发展的基本概念		V			
小兴工小孙司 柱	2. 可持续发展的基本思想		$\sqrt{}$			
化学工业的可持 续发展战略	3. 可持续发展的基本原则		$\sqrt{}$			
	4. 化学工业的可持续发展	$\sqrt{}$				
	5. 我国化学工业的可持续发展		$\sqrt{}$			

四、考试形式和试卷结构

1. 考核形式

- (1) 采用闭卷笔答方式。
- (2) 考试时间为90分钟。

2. 试卷结构

(1) 按考试水平分

考试水平	A	В	С	D
百分比	20%	30%	30%	20%

(2) 按考试题型分

题型	选择题	填空题	名词解释	简答题	实践应用题
百分比	20%	15%	15%	30%	20%

科目 2《大学化学》考试纲要

一、考试范围与内容

本纲要规定的考试范围和内容,以教育部所颁布的《高等职业学校专业教学标准(试行)》为依据,主要包括无机化学、分析化学、有机化学三个部分,总分为 150 分。考试侧重考查考生对化学基础知识的掌握程度,同时注意考查考生运用所学专业知识分析、解决实际问题的能力。

主要参考教材如下:

1. 钟国清,蔡自由主编《大学基础化学》(第三版),科学出版社,2019年。

二、考试目标与水平层次

本纲要确定的考试目标由知识与技能要点、考试条目和考试水平三部分组成。"知识与技能要点"考查考生应知应会的基础知识和基本技能;"考试条目"是"知识与技能要点"内容的细化;考试水平是具体确定所考查的应知应会的知识和技能的考查层次。

本纲要的考试水平分为四个层次: A(识记)、B(理解)、C(掌握)、D(综合运用)。每一较高层次同时包含其较低层次的考试水平。其具体含义为:

A(识记):主要考查考生对专业基础知识的识别和记忆水平,要求考生能正确地辨别、再认或再现相应的基础知识,如要求学生能从题目所提供的材料中识别出学过的知识(再认)或者能按题目要求复述学过的知识(再现)。即在记忆水平上考核考生的学习成果。例如:"氧化数"的概念。

B(理解):主要考查考生对专业基础知识的理解程度。除"识记"的要求外,正确理解所学知识的确切含义以及与其相关知识的内在联系。例如:水分子中化学键的种类。

C(掌握):主要考查考生对所学专业基础知识、基本技能的初步运用能力。

要求考生在理解的基础上,用所学过的知识及方法解决新情况下出现的简单问题。例如:酸性条件下,高锰酸根氧化草酸的化学反应方程式。

D(综合运用):主要考查考生对所学专业基础知识的综合运用能力。要求考生在对专业基础知识掌握的基础上,具有系统的、灵活的、较强的综合运用能力。例如:计算醋酸溶液中氢离子浓度的大小。

三、考试内容

一、物质结构基础知识

知识与技能	考试条目	考试水-		水平	
要点	写	A	В	C	D
原子核外电子的	1. 原子的组成	1			
	2. 原子核外电子的运动特性		$\sqrt{}$		
运动状态	3. 四个量子数的取值及物理意义		$\sqrt{}$		
原子核外电子的	1. 原子核外电子排布原则和方法		1		
排布	2. 核外电子排布与元素周期系的关系		$\sqrt{}$		
二丰甘木州氏的	1. 原子半径	1			
元素基本性质的	2. 电离能		$\sqrt{}$		
周期性	3. 电负性的周期性变化规律			$\sqrt{}$	
	1. 离子键的特征及本质		V		
化学键	2. 共价键的键型: σ键、π键和配位键		1		
	3. 共价键的特点	√			
-t- /1 // with 1/4	1. sp 杂化、sp2 杂化、sp3 杂化的分子构型		V		
杂化轨道理论与 分子空间构型	2. 等性杂化与不等性杂化		√		
万丁至时构型	3. 杂化轨道理论解释分子空间构型			$\sqrt{}$	

二、化学反应速率和化学平衡

知识与技能	考试条目	考试水平			
要点	与 讽余日		В	C	D
	1. 平均速率与瞬时速率	V			
化学反应速率	2. 碰撞理论与过渡态理论	$\sqrt{}$			
	3. 浓度、温度和催化剂分别对反应速率的影响		$\sqrt{}$		

	1. 实验平衡常数与标准平衡常数的表达式及意义	V	
化学平衡	2. 平衡常数与平衡转化率的计算		$\sqrt{}$
	3. 浓度、压力和温度分别对化学平衡的影响		V

三、化学分析概论

知识与技能	考试条目		考试水平				
要点			В	C	D		
	1. 系统误差与偶然误差,准确度与误差	$\sqrt{}$					
误差与数据处理	2. 提高分析结果准确度的方法		$\sqrt{}$				
	3. 有效数字及其运算规则		$\sqrt{}$				
滴定分析法	1. 滴定分析的基本方法	V					
	2. 标准溶液的配制与标定			$\sqrt{}$			

四、酸碱平衡与酸碱滴定法

知识与技能	考试条目	考试水			Ē
要点	与 风	A	В	С	D
记由知氏的知文	1. 弱电解质解离常数表达式	V			
弱电解质的解离	2. 解离度的意义		$\sqrt{}$		
平衡	3. 稀释定律			1	
野は氏フェル	1. 酸碱的定义	V			
酸碱质子理论	2. 共轭酸碱对的判断			√	
酸碱溶液 pH 的	1. 一元弱酸、弱碱中的氢离子浓度的计算公式				V
计算	2. 一般式与最简式及其判定条件				$\sqrt{}$
日南乙執亡上原	1. 同离子效应的定义及判断			V	
同离子效应与缓	2. 缓冲溶液的缓冲原理及其 pH 值的计算				$\sqrt{}$
冲溶液 	3. 缓冲溶液的选择和配置原则			√	
	1. 酚酞和甲基橙指示剂的变色原理与变色范围	V			
酸碱滴定法	2. 酸碱滴定的基本原理		$\sqrt{}$		
	3. 酸碱指示剂的合理选择。			V	

五、沉淀平衡与沉淀滴定法

知识与抗	技能	考试条目	考试水平	
------	----	------	------	--

要点		A	В	С	D
溶度积原理及应用	1. 溶度积的概念	$\sqrt{}$			
	2. 溶度积与溶解度的换算				$\sqrt{}$
	3. 溶度积规则及其应用		$\sqrt{}$		
沉淀滴定法	1. 银量法终点的确定及其应用			V	

六、氧化还原平衡与氧化还原滴定法

知识与技能	老 14 夕 口		考试水平			
要点	考试条目	A	В	C	D	
	1. 氧化数的概念	$\sqrt{}$				
氧化还原反应	2. 氧化还原反应的基本概念	$\sqrt{}$				
	3. 氧化还原反应方程式的配平			$\sqrt{}$		
	1. 原电池的概念	V				
	2. 电极反应与电池反应		$\sqrt{}$			
电极电势及其应 用	3. 电极电势的概念及其影响因素		$\sqrt{}$			
H	4. 能斯特方程的使用				$\sqrt{}$	
	5. 电极电势的应用				$\sqrt{}$	
复业还原后应流	1. 氧化还原滴定法的特点			V		
氧化还原反应滴 定法	2. 氧化还原滴定中所用的指示剂类型			$\sqrt{}$		
上	3. 高锰酸钾滴定法与碘量法		$\sqrt{}$			

七、配位平衡与配位滴定法

知识与技能	考试条目		考试水平				
要点			В	C	D		
和人物及甘应用	1. 配合物的定义、组成	V					
配合物及其应用	2. 常见配合物的命名	$\sqrt{}$					
配离子的配位解	1. 配合物稳定常数的意义		V				
离平衡	2. 影响配位平衡的因素			$\sqrt{}$			
配位滴定法	1. EDTA 配位滴定法的基本原理	V					
1 11 11 11 11 11 11 11 11 11 11 11 11 1	2. 提高配位滴定选择性的方法		$\sqrt{}$				

八、吸光光度法

知识与技能	サルタ ロ		考试水平			
要点	考试条目	A	В	C	D	
	1. 吸光光度法的特点	$\sqrt{}$				
吸光光度法的基	2. 物质对光的选择性吸收		$\sqrt{}$			
本原理及其应用	3. 朗伯-比尔定律		$\sqrt{}$			
	4. 显色反应及影响因素			$\sqrt{}$		
业库八托进五世	1. 分光光度法基本原理	V				
光度分析法及其	2. 吸光光度法测量条件的选择		$\sqrt{}$			
汉 6	3. 了解显色反应及其影响因素	$\sqrt{}$				

____ 九、电势分析法

知识与技能	考试条目 		考试水平			
要点			В	C	D	
电势分析法的基	1. 基本原理即能斯特方程		V			
本原理	2. 参比电极,指示电极	$\sqrt{}$				
由热八坛灶的床	1. 直接电势法	$\sqrt{}$				
电势分析法的应 用	2. 电势滴定法	$\sqrt{}$				
/ 1	3. 原理及终点的判定		$\sqrt{}$			

十、脂肪烃、芳香烃和卤代烃

知识与技能	土中夕口		考试水平		
要点	考试条目	A	В	С	D
	1. 烷烃的同系物和同分异构	1			
烷烃	2. 烷烃的命名				
	3. 烷烃的性质			$\sqrt{}$	
烯烃、炔烃和二	1. 烯烃、炔烃和二烯烃的结构		V		
烯烃	2. 烯烃、炔烃和二烯烃的化学性质			$\sqrt{}$	
	1. 芳香烃的分类与命名	1			
** ** ** **	2. 苯的结构		$\sqrt{}$		
芳香烃	3. 苯环上的亲电取代反应定位规则			$\sqrt{}$	
	4. 苯及其一取代同系物的化学性质				$\sqrt{}$

	1. 卤代烃的分类、命名和性质	$\sqrt{}$			
卤代烃	2. 不同类型卤代烃卤原子的活性差异		$\sqrt{}$		
	3. 卤代烃的亲核反应历程			$\sqrt{}$	

十一、醇、酚和醚

知识与技能	老 :		考试水平				
要点	考试条目	A	В	С	D		
	1. 醇的分类和命名	V					
平古	2. 醇的结构			1			
醇	3. 物理性质及其重要化合物,如甲醇、乙醇			$\sqrt{}$			
	4. 醇的主要化学性质,如酯化反应、氧化反应等				$\sqrt{}$		
	1. 酚的分类和命名	V					
酚	2. 酚的主要化学性质,如酸性、显色反应等				$\sqrt{}$		
	3. 重要化合物,如苯酚,甲苯酚			$\sqrt{}$			
	1. 醚的分类和命名	V					
	2. 重要醚的结构及理化性质,如乙醚等			$\sqrt{}$			

十二、醛和酮

知识与技能	李泽久日		考试水平				
要点	考试条目			С	D		
而以	1. 重要醛的结构及物理性质,如甲醛、苯甲醛等	$\sqrt{}$					
醛	2. 醛的化学性质,如加成、氧化、还原反应等			$\sqrt{}$			
酉司	1. 重要酮的结构及理化性质,如丙酮等			V			

十三、羧酸及其衍生物

知识与技能	考试条目		考试水平				
要点			В	C	D		
	1. 羧酸的分类和命名	$\sqrt{}$					
羧酸	2. 重要羧酸的结构及物理性质,如甲酸、乙酸等		$\sqrt{}$				
	3. 羧酸结构对其性质的影响			$\sqrt{}$			
羧酸衍生物	1. 重要羧酸衍生物的结构,如乙酸酐、DMF等	$\sqrt{}$					
按取刊生初	2. 重要羧酸衍生物的化学性质,如乙酸酐			$\sqrt{}$			

十四、含氮和含磷有机化合物

知识与技能	考试条目		考试水平				
要点			В	C	D		
₽÷;	1. 胺的分类和命名	V					
胺	2. 重要胺的理化性质,如苯胺的烷基化反应等			$\sqrt{}$			
◇™左扣 ル △₩m	1. 含磷有机物的结构	V					
含磷有机化合物	2. 有机磷农药的应用		$\sqrt{}$				

四、考试形式和试卷结构

- 1. 考核形式
- (1) 采用闭卷笔答方式。
- (2) 考试时间为90分钟。
- 2. 试卷结构

(1) 按考试水平分

考试水平	A	В	С	D
百分比	30%	30%	20%	20%

(2) 按考试题型分

题型	选择题	填空题	简答题	计算题
百分比	40%	20%	20%	20%